All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

t-Structures on stable derivators and Grothendieck hearts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471932" target="_blank" >RIV/00216208:11320/23:10471932 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P7nyF9.kQ9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P7nyF9.kQ9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2023.109139" target="_blank" >10.1016/j.aim.2023.109139</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    t-Structures on stable derivators and Grothendieck hearts

  • Original language description

    We prove that, given any strong and stable derivator and a t-structure in its base triangulated category D, the t structure canonically lifts to all the (coherent) diagram categories and each incoherent diagram in the heart uniquely lifts to a coherent one. We use this to show that the t structure being compactly generated implies that the coaisle is closed under directed homotopy colimits which, in turn, implies that the heart is an (Ab.5) Abelian category. If, moreover, D is a well-generated algebraic or topological triangulated category, then the heart of any accessibly embedded (in particular, compactly generated) t-structure has a generator. As a consequence, it follows that the heart of any compactly generated t-structure of a well generated algebraic or topological triangulated category is a Grothendieck Abelian category. &amp; COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Volume of the periodical

    429

  • Issue of the periodical within the volume

    15 September 2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    70

  • Pages from-to

    109139

  • UT code for WoS article

    001032944300001

  • EID of the result in the Scopus database