All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

t-Structures with Grothendieck hearts via functor categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471933" target="_blank" >RIV/00216208:11320/23:10471933 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3KtINi.SZ6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3KtINi.SZ6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00029-023-00872-9" target="_blank" >10.1007/s00029-023-00872-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    t-Structures with Grothendieck hearts via functor categories

  • Original language description

    We study when the heart of a t-structure in a triangulated category D with coproducts is AB5 or a Grothendieck category. If D satisfies Brown representability, a t-structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t-cogenerating object. If D is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t-structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t-structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or t-cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from D to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in D. This allows us to show that any standard well generated triangulated category D possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t-structures in such triangulated categories.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Selecta Mathematica-New Series

  • ISSN

    1420-9020

  • e-ISSN

    1420-9020

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    73

  • Pages from-to

    77

  • UT code for WoS article

    001100376100001

  • EID of the result in the Scopus database

    2-s2.0-85174218007