Cotilting with balanced big Cohen-Macaulay modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472174" target="_blank" >RIV/00216208:11320/23:10472174 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RauFZ3QDNJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RauFZ3QDNJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2022.11.019" target="_blank" >10.1016/j.jalgebra.2022.11.019</a>
Alternative languages
Result language
angličtina
Original language name
Cotilting with balanced big Cohen-Macaulay modules
Original language description
Over d-dimensional Cohen-Macaulay rings with a canonical module, d-cotilting classes containing the maximal and bal-anced big Cohen-Macaulay modules are classified. Particular emphasis is paid to the direct limit closure of the balanced big Cohen-Macaulay modules, and the class of modules of depth d, which are shown to respectively be the smallest and largest such cotilting classes. Considerations are then given to the interplay between local cohomology, canonical duality and cotilting modules for the class of Gorenstein flat modules over Gorenstein local rings. (c) 2022 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-02760Y" target="_blank" >GJ20-02760Y: Cohen-Macaulay rings and their applications in higher algebra and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
618
Issue of the periodical within the volume
15 March 2023
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
120-140
UT code for WoS article
000911125000001
EID of the result in the Scopus database
—