Global existence of classical solutions and numerical simulations of a cancer invasion model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473254" target="_blank" >RIV/00216208:11320/23:10473254 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.jY-SWgSHY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.jY-SWgSHY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/m2an/2023037" target="_blank" >10.1051/m2an/2023037</a>
Alternative languages
Result language
angličtina
Original language name
Global existence of classical solutions and numerical simulations of a cancer invasion model
Original language description
In this paper, we study a cancer invasion model both theoretically and numerically. The model is a nonstationary, nonlinear system of three coupled partial differential equations modeling the motion of cancer cells, degradation of the extracellular matrix, and certain enzymes. We first establish existence of global classical solutions in both two- and three-dimensional bounded domains, despite the lack of diffusion of the matrix-degrading enzymes and corresponding regularizing effects in the analytical treatment. Next, we give a weak formulation and apply finite differences in time and a Galerkin finite element scheme for spatial discretization. The overall algorithm is based on a fixed-point iteration scheme. Our theory and numerical developments are accompanied by some simulations in two and three spatial dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Modelling and Numerical Analysis
ISSN
0764-583X
e-ISSN
2804-7214
Volume of the periodical
57
Issue of the periodical within the volume
4
Country of publishing house
FR - FRANCE
Number of pages
27
Pages from-to
1893-1919
UT code for WoS article
001020856600002
EID of the result in the Scopus database
2-s2.0-85164539710