All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473256" target="_blank" >RIV/00216208:11320/23:10473256 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUlpcUGKSs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUlpcUGKSs</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-023-01511-2" target="_blank" >10.1007/s11075-023-01511-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes

  • Original language description

    Algebraically stabilized finite element discretizations of scalar steady-state convection-diffusion-reaction equations often provide accurate approximate solutions satisfying the discrete maximum principle (DMP). However, it was observed that a deterioration of the accuracy and convergence rates may occur for some problems if meshes without local symmetries are used. The paper investigates these phenomena both numerically and analytically and the findings are used to design a new algebraic stabilization called Symmetrized Monotone Upwind-type Algebraically Stabilized (SMUAS) method. It is proved that the SMUAS method is linearity preserving and satisfies the DMP on arbitrary simplicial meshes. Moreover, numerical results indicate that the SMUAS method leads to optimal convergence rates on general simplicial meshes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

    1572-9265

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    34

  • Pages from-to

    547-580

  • UT code for WoS article

    000963005100001

  • EID of the result in the Scopus database

    2-s2.0-85151526741