An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473256" target="_blank" >RIV/00216208:11320/23:10473256 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUlpcUGKSs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUlpcUGKSs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-023-01511-2" target="_blank" >10.1007/s11075-023-01511-2</a>
Alternative languages
Result language
angličtina
Original language name
An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes
Original language description
Algebraically stabilized finite element discretizations of scalar steady-state convection-diffusion-reaction equations often provide accurate approximate solutions satisfying the discrete maximum principle (DMP). However, it was observed that a deterioration of the accuracy and convergence rates may occur for some problems if meshes without local symmetries are used. The paper investigates these phenomena both numerically and analytically and the findings are used to design a new algebraic stabilization called Symmetrized Monotone Upwind-type Algebraically Stabilized (SMUAS) method. It is proved that the SMUAS method is linearity preserving and satisfies the DMP on arbitrary simplicial meshes. Moreover, numerical results indicate that the SMUAS method leads to optimal convergence rates on general simplicial meshes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Volume of the periodical
94
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
34
Pages from-to
547-580
UT code for WoS article
000963005100001
EID of the result in the Scopus database
2-s2.0-85151526741