All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On subspaces whose weak* derived sets are proper and norm dense

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473976" target="_blank" >RIV/00216208:11320/23:10473976 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=B3uVn59MQK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=B3uVn59MQK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm220303-29-4" target="_blank" >10.4064/sm220303-29-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On subspaces whose weak* derived sets are proper and norm dense

  • Original language description

    We study long chains of iterated weak* derived sets, that is, sets of all weak* limits of bounded nets, of subspaces with the additional property that the penultimate weak* derived set is a proper norm dense subspace of the dual. We extend the result of Ostrovskii and show that in the dual of any non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual, we can find for any countable successor ordinal alpha a subspace whose weak* derived set of order alpha is proper and norm dense.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    268

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    14

  • Pages from-to

    319-332

  • UT code for WoS article

    000862300000001

  • EID of the result in the Scopus database

    2-s2.0-85162901746