On subspaces whose weak* derived sets are proper and norm dense
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473976" target="_blank" >RIV/00216208:11320/23:10473976 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=B3uVn59MQK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=B3uVn59MQK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm220303-29-4" target="_blank" >10.4064/sm220303-29-4</a>
Alternative languages
Result language
angličtina
Original language name
On subspaces whose weak* derived sets are proper and norm dense
Original language description
We study long chains of iterated weak* derived sets, that is, sets of all weak* limits of bounded nets, of subspaces with the additional property that the penultimate weak* derived set is a proper norm dense subspace of the dual. We extend the result of Ostrovskii and show that in the dual of any non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual, we can find for any countable successor ordinal alpha a subspace whose weak* derived set of order alpha is proper and norm dense.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
1730-6337
Volume of the periodical
268
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
14
Pages from-to
319-332
UT code for WoS article
000862300000001
EID of the result in the Scopus database
2-s2.0-85162901746