Gμ-covers and ω1-strongly compact cardinals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474844" target="_blank" >RIV/00216208:11320/23:10474844 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YBxC9CIYzN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YBxC9CIYzN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2023.108652" target="_blank" >10.1016/j.topol.2023.108652</a>
Alternative languages
Result language
angličtina
Original language name
Gμ-covers and ω1-strongly compact cardinals
Original language description
Lindelof numbers of sets Z subset of beta(lambda) lambda are examined in G delta-topologies (and in G mu- topologies). The results are in a close connection to measurable and mu-strongly compact cardinal numbers. Those numbers are characterized by means of extensions of weakly complete filters, by tau-compactness of sets of certain complete ultrafilters and by Lindelof numbers of the set of uniform ultrafilters in G mu-topologies. Some known results about mu-strongly compact cardinals are reproved using set-theoretical methods. (c) 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
1879-3207
Volume of the periodical
338
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
108652
UT code for WoS article
001099053200001
EID of the result in the Scopus database
2-s2.0-85167416461