Optimal interpolation with spatial rational Pythagorean hodograph curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474944" target="_blank" >RIV/00216208:11320/23:10474944 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s4-wSVoOaJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s4-wSVoOaJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2023.128214" target="_blank" >10.1016/j.amc.2023.128214</a>
Alternative languages
Result language
angličtina
Original language name
Optimal interpolation with spatial rational Pythagorean hodograph curves
Original language description
Using a residuum approach, we provide a complete description of the space of the rational spatial curves of given tangent directions. The rational Pythagorean hodograph curves are obtained as a special case when the norm of the direction field is a perfect square. The basis for the curve space is given explicitly. Consequently a number of interpolation problems (G1, C1, C2, C1/G2) in this space become linear, cusp avoidance can be encoded by linear inequalities, and optimization problems like minimal energy or optimal length are quadratic and can be solved efficiently via quadratic programming. We outline the interpolation/optimization strategy and demonstrate it on several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
1873-5649
Volume of the periodical
458
Issue of the periodical within the volume
1 December 2023
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
128214
UT code for WoS article
001039368000001
EID of the result in the Scopus database
2-s2.0-85165023497