Supergravities and branes from Hilbert-Poincaré series
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475411" target="_blank" >RIV/00216208:11320/23:10475411 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z0MbI7nR5T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z0MbI7nR5T</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/JHEP12(2023)088" target="_blank" >10.1007/JHEP12(2023)088</a>
Alternative languages
Result language
angličtina
Original language name
Supergravities and branes from Hilbert-Poincaré series
Original language description
The Molien-Weyl integral formula and the Hilbert-Poincare series have proven to be powerful mathematical tools in relation to gauge theories, allowing to count the number of gauge invariant operators. In this paper we show that these methods can also be employed to construct Free Differential Algebras and, therefore, reproduce the associated pure supergravity spectrum and nonperturbative objects. Indeed, given a set of fields, the Hilbert-Poincare series allows to compute all possible invariants and consequently derive the cohomology structure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of High Energy Physics
ISSN
1029-8479
e-ISSN
—
Volume of the periodical
2023
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
48
Pages from-to
88
UT code for WoS article
001128375100004
EID of the result in the Scopus database
2-s2.0-85180488857