Borel measurable Hahn-Mazurkiewicz theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475468" target="_blank" >RIV/00216208:11320/23:10475468 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IvxuYZgsSk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IvxuYZgsSk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2023.108536" target="_blank" >10.1016/j.topol.2023.108536</a>
Alternative languages
Result language
angličtina
Original language name
Borel measurable Hahn-Mazurkiewicz theorem
Original language description
It is well known due to Hahn and Mazurkiewicz that every Peano continuum is a continuous image of the unit interval. We prove that an assignment, which takes as an input a Peano continuum and produces as an output a continuous mapping whose range is the Peano continuum, can be realized in a Borel measurable way. Similarly, we find a Borel measurable assignment which takes any nonempty compact metric space and assigns a continuous mapping from the Cantor set onto that space. To this end we use the Burgess selection theorem. Finally, a Borel measurable way of assigning an arc joining two selected points in a Peano continuum is found.(c) 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
1879-3207
Volume of the periodical
333
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
108536
UT code for WoS article
000989312600001
EID of the result in the Scopus database
2-s2.0-85153396505