All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Borel measurable Hahn-Mazurkiewicz theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475468" target="_blank" >RIV/00216208:11320/23:10475468 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IvxuYZgsSk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IvxuYZgsSk</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2023.108536" target="_blank" >10.1016/j.topol.2023.108536</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Borel measurable Hahn-Mazurkiewicz theorem

  • Original language description

    It is well known due to Hahn and Mazurkiewicz that every Peano continuum is a continuous image of the unit interval. We prove that an assignment, which takes as an input a Peano continuum and produces as an output a continuous mapping whose range is the Peano continuum, can be realized in a Borel measurable way. Similarly, we find a Borel measurable assignment which takes any nonempty compact metric space and assigns a continuous mapping from the Cantor set onto that space. To this end we use the Burgess selection theorem. Finally, a Borel measurable way of assigning an arc joining two selected points in a Peano continuum is found.(c) 2023 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

    1879-3207

  • Volume of the periodical

    333

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

    108536

  • UT code for WoS article

    000989312600001

  • EID of the result in the Scopus database

    2-s2.0-85153396505