Different degrees of non-compactness for optimal Sobolev embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475592" target="_blank" >RIV/00216208:11320/23:10475592 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/23:00372645
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rOIJ8hO36P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rOIJ8hO36P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2023.109880" target="_blank" >10.1016/j.jfa.2023.109880</a>
Alternative languages
Result language
angličtina
Original language name
Different degrees of non-compactness for optimal Sobolev embeddings
Original language description
The structure of non-compactness of optimal Sobolev embed-dings of m-th order into the class of Lebesgue spaces and into that of all rearrangement-invariant function spaces is quantitatively studied. Sharp two-sided estimates of Bern-stein numbers of such embeddings are obtained. It is shown that, whereas the optimal Sobolev embedding within the class of Lebesgue spaces is finitely strictly singular, the optimal Sobolev embedding in the class of all rearrangement-invariant function spaces is not even strictly singular. (c) 2023 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Volume of the periodical
284
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
109880
UT code for WoS article
000948923300001
EID of the result in the Scopus database
2-s2.0-85149370825