All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Different degrees of non-compactness for optimal Sobolev embeddings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475592" target="_blank" >RIV/00216208:11320/23:10475592 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/23:00372645

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rOIJ8hO36P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rOIJ8hO36P</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2023.109880" target="_blank" >10.1016/j.jfa.2023.109880</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Different degrees of non-compactness for optimal Sobolev embeddings

  • Original language description

    The structure of non-compactness of optimal Sobolev embed-dings of m-th order into the class of Lebesgue spaces and into that of all rearrangement-invariant function spaces is quantitatively studied. Sharp two-sided estimates of Bern-stein numbers of such embeddings are obtained. It is shown that, whereas the optimal Sobolev embedding within the class of Lebesgue spaces is finitely strictly singular, the optimal Sobolev embedding in the class of all rearrangement-invariant function spaces is not even strictly singular. (c) 2023 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Volume of the periodical

    284

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    109880

  • UT code for WoS article

    000948923300001

  • EID of the result in the Scopus database

    2-s2.0-85149370825