Isomorphisms of C(K, E) Spaces and Height of K
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475597" target="_blank" >RIV/00216208:11320/23:10475597 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YpWEmfLSOs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YpWEmfLSOs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-023-02400-7" target="_blank" >10.1007/s00009-023-02400-7</a>
Alternative languages
Result language
angličtina
Original language name
Isomorphisms of C(K, E) Spaces and Height of K
Original language description
Let K-1, K-2 be compact Hausdorff spaces and E-1, E-2 be Ba-nach spaces not containing a copy of c(0). We establish lower estimates of the Banach-Mazur distance between the spaces of continuous functions C(K-1, E-1) and C(K-2, E-2) based on the ordinals ht(K-1), ht(K-2), which are new even for the case of spaces of real-valued functions on ordinal intervals. As a corollary we deduce that C(K-1, E-1) and C(K-2, E-2) are not isomorphic if ht(K-1) is substantially different from ht(K-2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
1660-5454
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
194
UT code for WoS article
000978366000006
EID of the result in the Scopus database
2-s2.0-85154036295