All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automated real-space lattice extraction for atomic force microscopy images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475657" target="_blank" >RIV/00216208:11320/23:10475657 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I_V.vJs2cU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I_V.vJs2cU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2632-2153/acb5e0" target="_blank" >10.1088/2632-2153/acb5e0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automated real-space lattice extraction for atomic force microscopy images

  • Original language description

    Analyzing atomically resolved images is a time-consuming process requiring solid experience and substantial human intervention. In addition, the acquired images contain a large amount of information such as crystal structure, presence and distribution of defects, and formation of domains, which need to be resolved to understand a material&apos;s surface structure. Therefore, machine learning techniques have been applied in scanning probe and electron microscopies during the last years, aiming for automatized and efficient image analysis. This work introduces a free and open source tool (AiSurf: Automated Identification of Surface Images) developed to inspect atomically resolved images via scale-invariant feature transform and clustering algorithms. AiSurf extracts primitive lattice vectors, unit cells, and structural distortions from the original image, with no pre-assumption on the lattice and minimal user intervention. The method is applied to various atomically resolved non-contact atomic force microscopy images of selected surfaces with different levels of complexity: anatase TiO2(101), oxygen deficient rutile TiO2(110) with and without CO adsorbates, SrTiO3(001) with Sr vacancies and graphene with C vacancies. The code delivers excellent results and is tested against atom misclassification and artifacts, thereby facilitating the interpretation of scanning probe microscopy images.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GX20-21727X" target="_blank" >GX20-21727X: Ferroelectric Perovskites for Energy Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Machine Learning-Science and Technology

  • ISSN

    2632-2153

  • e-ISSN

    2632-2153

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    015015

  • UT code for WoS article

    000929298900001

  • EID of the result in the Scopus database

    2-s2.0-85148236605