All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Accreting luminous low-mass planets escape from migration traps at pressure bumps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475688" target="_blank" >RIV/00216208:11320/23:10475688 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rTZ9Zm_V2C" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rTZ9Zm_V2C</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stad2059" target="_blank" >10.1093/mnras/stad2059</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Accreting luminous low-mass planets escape from migration traps at pressure bumps

  • Original language description

    We investigate the migration of Mars- to super-Earth-sized planets in the vicinity of a pressure bump in a 3D radiative protoplanetary disc while accounting for the effect of accretion heat release. Pressure bumps have often been assumed to act as efficient migration traps, but we show that the situation changes when thermal forces are taken into account. Our simulations reveal that for planetary masses ?2 M-?, once their luminosity exceeds the critical value predicted by linear theory, thermal driving causes their orbits to become eccentric, quenching the positive corotation torque responsible for the migration trap. As a result, planets continue migrating inward past the pressure bump. Additionally, we find that planets that remain circular and evolve in the super-Keplerian region of the bump exhibit a reversed asymmetry of their thermal lobes, with the heating torque having an opposite (negative) sign compared to the standard circular case, thus leading to inward migration as well. We also demonstrate that the supercritical luminosities of the planets in question can be reached through the accretion of pebbles accumulating in the bump. Our findings have implications for planet formation scenarios that rely on the existence of migration traps at pressure bumps, as the bumps may repeatedly spawn inward-migrating low-mass embryos rather than harbouring newborn planets until they become massive.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GM21-23067M" target="_blank" >GM21-23067M: Hydrodynamic interactions of planets with protoplanetary disks and the origin of close-in exoplanetary systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

    1365-2966

  • Volume of the periodical

    524

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    2705-2720

  • UT code for WoS article

    001034191100008

  • EID of the result in the Scopus database

    2-s2.0-85168687436