Critic-Driven Decoding for Mitigating Hallucinations in Data-to-text Generation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475866" target="_blank" >RIV/00216208:11320/23:10475866 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.18653/v1/2023.emnlp-main.172" target="_blank" >http://dx.doi.org/10.18653/v1/2023.emnlp-main.172</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.emnlp-main.172" target="_blank" >10.18653/v1/2023.emnlp-main.172</a>
Alternative languages
Result language
angličtina
Original language name
Critic-Driven Decoding for Mitigating Hallucinations in Data-to-text Generation
Original language description
Hallucination of text ungrounded in the input is a well-known problem in neural data-to-text generation. Many methods have been proposed to mitigate it, but they typically require altering model architecture or collecting additional data, and thus cannot be easily applied to an existing model. In this paper, we explore a new way to mitigate hallucinations by combining the probabilistic output of a generator language model (LM) with the output of a special "text critic" classifier, which guides the generation by assessing the match between the input data and the text generated so far. Our method does not need any changes to the underlying LM's architecture or training procedure and can thus be combined with any model and decoding operating on word probabilities. The critic does not need any additional training data, using the base LM's training data and synthetic negative examples. Our experimental results show that our method improves over the baseline on the WebNLG and OpenDialKG benchmarks
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)
ISBN
979-8-89176-060-8
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
2853-2862
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Singapore
Event date
Dec 6, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—