Hairstyle Transfer between Face Images
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354110" target="_blank" >RIV/68407700:21230/21:00354110 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/FG52635.2021.9667038" target="_blank" >https://doi.org/10.1109/FG52635.2021.9667038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FG52635.2021.9667038" target="_blank" >10.1109/FG52635.2021.9667038</a>
Alternative languages
Result language
angličtina
Original language name
Hairstyle Transfer between Face Images
Original language description
We propose a neural network which takes two inputs, a hair image and a face image, and produces an output image having the hair of the hair image seamlessly merged with the inner face of the face image. Our architecture consists of neural networks mapping the input images into a latent code of a pretrained StyleGAN2 which generates the output high-definition image. We propose an algorithm for training parameters of the architecture solely from synthetic images generated by the StyleGAN2 itself without the need of any annotations or external dataset of hairstyle images. We empirically demonstrate the effectiveness of our method in applications including hair-style transfer, hair generation for 3D morphable models, and hair-style interpolation. Fidelity of the generated images is verified by a user study and by a novel hairstyle metric proposed in the paper.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. of the 16th IEEE International Conference on Automatic Face and Gesture Recognition, 2021 (FG 2021)
ISBN
978-1-6654-3176-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
IEEE Computer Society Press
Place of publication
Los Alamitos
Event location
Jodhpur
Event date
Dec 15, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—