Bad MT Systems are Good for Quality Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476104" target="_blank" >RIV/00216208:11320/23:10476104 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bad MT Systems are Good for Quality Estimation
Original language description
Quality estimation (QE) is the task of predicting quality of outputs produced by machine translation (MT) systems. Currently, the highest-performing QE systems are supervised and require training on data with golden quality scores. In this paper, we investigate the impact of the quality of the underlying MT outputs on the performance of QE systems. We find that QE models trained on datasets with lower-quality translations often outperform those trained on higher-quality data. We also demonstrate that good performance can be achieved by using a mix of data from different MT systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Machine Translation Summit XIX vol. 1: Research Track
ISBN
978-4-9913461-0-1
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
200-208
Publisher name
Asia-Pacific Association for Machine Translation (AAMT)
Place of publication
Kyoto, Japan
Event location
Macau SAR, China
Event date
Sep 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—