All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-view fusion for universal translation quality estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APEVAZN2Q" target="_blank" >RIV/00216208:11320/23:PEVAZN2Q - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2023.102022" target="_blank" >10.1016/j.inffus.2023.102022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-view fusion for universal translation quality estimation

  • Original language description

    "Machine translation quality estimation (QE) aims to evaluate the result of translation without reference. Despite the progress it has made, state-of-the-art QE models are proven to be biased. More specifically, they over-rely on spurious statistical features while ignoring the bilingual semantic adequacy, leading to performance degradation. Besides, existing approaches require large amounts of annotation data, restricting their applications in new domains and languages. In this work, we propose a universal framework for quality estimation based on multi-view fusion. We first introduce noise to the target side of the parallel sentence pair, either by pre-trained language model or by large language model. After that, with the clean parallel pairs and the noised pairs as different views, the QE model is trained to distinguish the clean pairs from the noised ones. Our method can improve the accuracy and generalizability in supervised scenario, and can solely perform estimation in zero-shot scenario. We perform experiments on WMT QE evaluation datasets under different scenarios, verifying the effectiveness of our method. We also make an in-depth investigation of the bias of QE model."

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    "INFORMATION FUSION"

  • ISSN

    1566-2535

  • e-ISSN

  • Volume of the periodical

    102

  • Issue of the periodical within the volume

    2024-2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    001083713100001

  • EID of the result in the Scopus database