Multi-view fusion for universal translation quality estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APEVAZN2Q" target="_blank" >RIV/00216208:11320/23:PEVAZN2Q - isvavai.cz</a>
Result on the web
<a href="https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2023.102022" target="_blank" >10.1016/j.inffus.2023.102022</a>
Alternative languages
Result language
angličtina
Original language name
Multi-view fusion for universal translation quality estimation
Original language description
"Machine translation quality estimation (QE) aims to evaluate the result of translation without reference. Despite the progress it has made, state-of-the-art QE models are proven to be biased. More specifically, they over-rely on spurious statistical features while ignoring the bilingual semantic adequacy, leading to performance degradation. Besides, existing approaches require large amounts of annotation data, restricting their applications in new domains and languages. In this work, we propose a universal framework for quality estimation based on multi-view fusion. We first introduce noise to the target side of the parallel sentence pair, either by pre-trained language model or by large language model. After that, with the clean parallel pairs and the noised pairs as different views, the QE model is trained to distinguish the clean pairs from the noised ones. Our method can improve the accuracy and generalizability in supervised scenario, and can solely perform estimation in zero-shot scenario. We perform experiments on WMT QE evaluation datasets under different scenarios, verifying the effectiveness of our method. We also make an in-depth investigation of the bias of QE model."
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
"INFORMATION FUSION"
ISSN
1566-2535
e-ISSN
—
Volume of the periodical
102
Issue of the periodical within the volume
2024-2
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
1-9
UT code for WoS article
001083713100001
EID of the result in the Scopus database
—