Shortening of the results of machine translation using paraphrasing dataset
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476206" target="_blank" >RIV/00216208:11320/23:10476206 - isvavai.cz</a>
Result on the web
<a href="https://ceur-ws.org/Vol-3498/paper15.pdf" target="_blank" >https://ceur-ws.org/Vol-3498/paper15.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Shortening of the results of machine translation using paraphrasing dataset
Original language description
As machine translation applications continue to expand into the realm of real-time events, the need for faster and more concise translation becomes increasingly important. One such application is simultaneous speech translation, an emission of subtitles in the target language given speech in the source language. In this work, we focus on easing reader's comprehension of subtitles by making the translation shorter while preserving its informativeness. For this, we use the S, M and L version of the Paraphrase Database (PPDB), and exploit their property that some of the paraphrasing rules differ in length of the left and right side. Selecting rules that make the output shorter, we fine-tune an MT model to naturally generate shorter translations. The results show that the model's conciseness improves by up to 0.61%, which leaves the space for improvements using bigger versions of PPDB in future work.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23rd Conference Information Technologies – Applications and Theory (ITAT 2023)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
10
Pages from-to
121-130
Publisher name
23rd Conference on Information Technologies – Applications and Theory
Place of publication
Košice, Slovakia
Event location
Tatranské Matliare, Slovakia
Event date
Sep 22, 2023
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—