Are Large Language Models All You Need for Task-Oriented Dialogue?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476275" target="_blank" >RIV/00216208:11320/23:10476275 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Are Large Language Models All You Need for Task-Oriented Dialogue?
Original language description
Instruction-finetuned large language models (LLMs) gained a huge popularity recently, thanks to their ability to interact with users through conversation. In this work, we aim to evaluate their ability to complete multi-turn tasks and interact with external databases in the context of established task-oriented dialogue benchmarks. We show that in explicit belief state tracking, LLMs underperform compared to specialized task-specific models. Nevertheless, they show some ability to guide the dialogue to a successful ending through their generated responses if they are provided with correct slot values. Furthermore, this ability improves with few-shot in-domain examples.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LM2023062" target="_blank" >LM2023062: Digital Research Infrastructure for Language Technologies, Arts and Humanities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)
ISBN
979-8-89176-028-8
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
216-228
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsubrgh, PA, USA
Event location
Prague, Czechia
Event date
Sep 13, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—