WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492883" target="_blank" >RIV/00216208:11320/24:10492883 - isvavai.cz</a>
Result on the web
<a href="https://openreview.net/forum?id=mUSPhG4uDW" target="_blank" >https://openreview.net/forum?id=mUSPhG4uDW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2402.05930" target="_blank" >10.48550/arXiv.2402.05930</a>
Alternative languages
Result language
angličtina
Original language name
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Original language description
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve realworld tasks in a multi-turn dialogue fashion. To support this problem, we introduce WebLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers abroad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller fi
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 41st International Conference on Machine Learning
ISBN
979-8-3313-0223-8
ISSN
2640-3498
e-ISSN
—
Number of pages
50
Pages from-to
1-50
Publisher name
Proceedings of Machine Learning Research (PMLR)
Place of publication
San Diego, USA
Event location
Wien, Austria
Event date
Jul 21, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—