All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492883" target="_blank" >RIV/00216208:11320/24:10492883 - isvavai.cz</a>

  • Result on the web

    <a href="https://openreview.net/forum?id=mUSPhG4uDW" target="_blank" >https://openreview.net/forum?id=mUSPhG4uDW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.48550/arXiv.2402.05930" target="_blank" >10.48550/arXiv.2402.05930</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

  • Original language description

    We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve realworld tasks in a multi-turn dialogue fashion. To support this problem, we introduce WebLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers abroad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller fi

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 41st International Conference on Machine Learning

  • ISBN

    979-8-3313-0223-8

  • ISSN

    2640-3498

  • e-ISSN

  • Number of pages

    50

  • Pages from-to

    1-50

  • Publisher name

    Proceedings of Machine Learning Research (PMLR)

  • Place of publication

    San Diego, USA

  • Event location

    Wien, Austria

  • Event date

    Jul 21, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article