3-Coloring C4 or C3 -Free Diameter Two Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476387" target="_blank" >RIV/00216208:11320/23:10476387 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-38906-1_36" target="_blank" >https://doi.org/10.1007/978-3-031-38906-1_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-38906-1_36" target="_blank" >10.1007/978-3-031-38906-1_36</a>
Alternative languages
Result language
angličtina
Original language name
3-Coloring C4 or C3 -Free Diameter Two Graphs
Original language description
The question whether 3-Coloring can be solved in polynomial time for the diameter two graphs is a well-known open problem in the area of algorithmic graph theory. We study the problem restricted to graph classes that avoid cycles of given lengths as induced subgraphs. Martin et al. [CIAC 2021] showed that the problem is solvable in polynomial time for C5 -free or C6 -free graphs, and, (C4, Cs) -free graphs where sELEMENT OF { 3, 7, 8, 9 }. We extend their result proving that it is polynomial-time solvable for (C4, Cs) -free graphs, for any constant s>= 5, and for (C3, C7) -free graphs. Our results also hold for the more general problem List 3-Colouring.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-19073S" target="_blank" >GA22-19073S: Combinatorial and computational complexity in topology and geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-38905-4
ISSN
—
e-ISSN
1611-3349
Number of pages
14
Pages from-to
547-560
Publisher name
SPRINGER
Place of publication
Neuveden
Event location
Montreal, Canada
Event date
Jul 31, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—