On the structure and clique-width of (4K1,C4,C6,C7)-free graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455674" target="_blank" >RIV/00216208:11320/22:10455674 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wf3hd5sXZy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wf3hd5sXZy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22749" target="_blank" >10.1002/jgt.22749</a>
Alternative languages
Result language
angličtina
Original language name
On the structure and clique-width of (4K1,C4,C6,C7)-free graphs
Original language description
We give a complete structural description of (4K1,C4,C6,C7)-free graphs that do not contain a simplicial vertex, and we prove that such graphs have bounded clique-width. Together with the results of Foley et al., this implies that (4K1,C4,C6)-free graphs that do not contain a simplicial vertex have bounded clique-width. Consequently, Graph Coloring can be solved in polynomial time for (4K1,C4,C6)-free graphs, that is, for even-hole-free graphs of stability number at most three.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
1097-0118
Volume of the periodical
99
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
435-460
UT code for WoS article
000702347800001
EID of the result in the Scopus database
2-s2.0-85115971803