All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inversion sequences avoiding a triple of patterns of 3 letters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476766" target="_blank" >RIV/00216208:11320/23:10476766 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4kDMQ33p9j" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4kDMQ33p9j</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/11603" target="_blank" >10.37236/11603</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inversion sequences avoiding a triple of patterns of 3 letters

  • Original language description

    An inversion sequence of length n is a sequence of integers e = e1...en which satisfies for each i in [n] = {1, 2, ... , n} the inequality 0 &lt;= ei &lt; i. For a set of patterns P, we let In(P) denote the set of inversion sequences of length n that avoid all the patterns from P. We say that two sets of patterns P and Q are IWilf-equivalent if |In(P)| = |In(Q)| for every n. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is 137, 138 or 139. In particular, to show that this number is exactly 137, it remains to prove {101, 102, 110} is IWilf equivalent to {021, 100, 101}, and {100, 110, 201} is IWilf equivalent to {100, 120, 210}.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1097-1440

  • e-ISSN

    1077-8926

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    p319

  • UT code for WoS article

    001049484500001

  • EID of the result in the Scopus database

    2-s2.0-85167689746