All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convex-Geometric k-Planar Graphs Are Convex-Geometric (k+1)-Quasiplanar

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10491478" target="_blank" >RIV/00216208:11320/23:10491478 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-49275-4" target="_blank" >https://doi.org/10.1007/978-3-031-49275-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-49275-4" target="_blank" >10.1007/978-3-031-49275-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convex-Geometric k-Planar Graphs Are Convex-Geometric (k+1)-Quasiplanar

  • Original language description

    A drawing of a graph is k-planar if every edge has at most k crossings with other edges of the graph and it is k-quasiplanar if it has no set of k pairwise crossing edges. We say that a graph drawing is simple if two edges intersect at most once. In 2020, Angelini et al. proved that all simple k-planar graphs are simple -quasiplanar, which was the first non-trivial relationship between these two classes. We say that a graph drawing is convex-geometric if its vertices are drawn as points on a circle and its edges are drawn as straight line segments between them. In this paper we prove that, for k&gt;1 , every convex-geometric k-planar graph is convex-geometric (k+1)-quasiplanar.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II

  • ISBN

    978-3-031-49275-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    3

  • Pages from-to

    248-250

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Isola delle Femmine

  • Event date

    Sep 20, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001207942000020