Convex-Geometric k-Planar Graphs Are Convex-Geometric (k+1)-Quasiplanar
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10491478" target="_blank" >RIV/00216208:11320/23:10491478 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-49275-4" target="_blank" >https://doi.org/10.1007/978-3-031-49275-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49275-4" target="_blank" >10.1007/978-3-031-49275-4</a>
Alternative languages
Result language
angličtina
Original language name
Convex-Geometric k-Planar Graphs Are Convex-Geometric (k+1)-Quasiplanar
Original language description
A drawing of a graph is k-planar if every edge has at most k crossings with other edges of the graph and it is k-quasiplanar if it has no set of k pairwise crossing edges. We say that a graph drawing is simple if two edges intersect at most once. In 2020, Angelini et al. proved that all simple k-planar graphs are simple -quasiplanar, which was the first non-trivial relationship between these two classes. We say that a graph drawing is convex-geometric if its vertices are drawn as points on a circle and its edges are drawn as straight line segments between them. In this paper we prove that, for k>1 , every convex-geometric k-planar graph is convex-geometric (k+1)-quasiplanar.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II
ISBN
978-3-031-49275-4
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
3
Pages from-to
248-250
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Isola delle Femmine
Event date
Sep 20, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001207942000020