All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Density Formula : One Lemma to Bound Them All

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490809" target="_blank" >RIV/00216208:11320/24:10490809 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.GD.2024.7" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.7" target="_blank" >10.4230/LIPIcs.GD.2024.7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Density Formula : One Lemma to Bound Them All

  • Original language description

    We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1,2, fan-crossing/fan-planar graphs, k-bend RAC-graphs with k = 0,1,2, quasiplanar graphs, and k^+-real face graphs. In some cases (1-bend and 2-bend RAC-graphs and fan-crossing/fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics

  • ISBN

    978-3-95977-343-0

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    1-17

  • Publisher name

    Schloss Dagstuhl -- Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Technische Universität Wien

  • Event date

    Sep 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article