All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Explicit Morphological Knowledge Improves Pre-training of Language Models for Hebrew

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AANRWMGER" target="_blank" >RIV/00216208:11320/23:ANRWMGER - isvavai.cz</a>

  • Result on the web

    <a href="http://arxiv.org/abs/2311.00658" target="_blank" >http://arxiv.org/abs/2311.00658</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Explicit Morphological Knowledge Improves Pre-training of Language Models for Hebrew

  • Original language description

    "Pre-trained language models (PLMs) have shown remarkable successes in acquiring a wide range of linguistic knowledge, relying solely on self-supervised training on text streams. Nevertheless, the effectiveness of this language-agnostic approach has been frequently questioned for its sub-optimal performance when applied to morphologically-rich languages (MRLs). We investigate the hypothesis that incorporating explicit morphological knowledge in the pre-training phase can improve the performance of PLMs for MRLs. We propose various morphologically driven tokenization methods enabling the model to leverage morphological cues beyond raw text. We pre-train multiple language models utilizing the different methods and evaluate them on Hebrew, a language with complex and highly ambiguous morphology. Our experiments show that morphologically driven tokenization demonstrates improved results compared to a standard language-agnostic tokenization, on a benchmark of both semantic and morphologic tasks. These findings suggest that incorporating morphological knowledge holds the potential for further improving PLMs for morphologically rich languages."

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů