All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AELHEGRXZ" target="_blank" >RIV/00216208:11320/23:ELHEGRXZ - isvavai.cz</a>

  • Result on the web

    <a href="https://dl.acm.org/doi/10.1145/3617372" target="_blank" >https://dl.acm.org/doi/10.1145/3617372</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3617372" target="_blank" >10.1145/3617372</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation

  • Original language description

    "Machine translation has shown potential in improving access to medical information and healthcare services for multilingual patients. This research aims to enhance machine translation accuracy in the medical field, specifically for translating from Hindi to English. The study introduces a new approach that dynamically allocates decoding parameters using regression models, overcoming the limitations of fixed parameters in the decoder. A comprehensive dataset is created to address limited data availability, enabling regression models to predict optimal pruning parameters. The main motivation for the study is the introduction of a regression method for optimizing pruning parameters, which is a novel approach in this context. The proposed approach outperforms existing methods, achieving improved translation accuracy. Standard metrics such as the BLEU score are used to evaluate translations. Ensemble average and pipeline approaches further enhance performance. The improved performance of the proposed models can be attributed to the ensemble of diverse models (Extra Trees, LightGBM, XGBoost, and Random Forest) that employ various techniques to reduce overfitting, enhance prediction accuracy, and improve translation by correcting prediction errors. The study contributes to facilitating the translation and sharing of medical literature, promoting collaboration and knowledge exchange across languages. The research demonstrates the effectiveness of the regression method for optimizing pruning parameters in machine translation, leading to improved translation accuracy in the medical field. The proposed models offer promising results, paving the way for enhanced machine translation systems and promoting collaboration and knowledge exchange in the medical domain. The source code is available at https://huggingface.co/debajyoty/statistical-regression-Based-MT/tree/main/Statistical-Regression-SMT."

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    "ACM Transactions on Asian and Low-Resource Language Information Processing"

  • ISSN

    2375-4699

  • e-ISSN

  • Volume of the periodical

    ""

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

  • EID of the result in the Scopus database