Multilingual Automatic Speech Recognition for Scandinavian Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AZREZPYUQ" target="_blank" >RIV/00216208:11320/23:ZREZPYUQ - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2023.nodalida-1.46/" target="_blank" >https://aclanthology.org/2023.nodalida-1.46/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multilingual Automatic Speech Recognition for Scandinavian Languages
Original language description
"We investigate the effectiveness of multilingual automatic speech recognition models for Scandinavian languages by further fine-tuning a Swedish model on Swedish, Danish, and Norwegian. We first explore zero-shot models, which perform poorly across the three languages. However, we show that a multilingual model based on a strong Swedish model, further fine-tuned on all three languages, performs well for Norwegian and Danish, with a relatively low decrease in the performance for Swedish. With a language classification module, we improve the performance of the multilingual model even further."
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
"Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)"
ISBN
978-99-1621-999-7
ISSN
1736-8197
e-ISSN
—
Number of pages
7
Pages from-to
460-466
Publisher name
arXiv
Place of publication
—
Event location
Singapore
Event date
Jan 1, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—