Global weak solutions to a 3D/3D fluid-structure interaction problem including possible contacts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10475601" target="_blank" >RIV/00216208:11320/24:10475601 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~cPaqeRb27" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~cPaqeRb27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.12.014" target="_blank" >10.1016/j.jde.2023.12.014</a>
Alternative languages
Result language
angličtina
Original language name
Global weak solutions to a 3D/3D fluid-structure interaction problem including possible contacts
Original language description
In this paper, we study an interaction problem between a 3D compressible viscous fluid and a 3D nonlinear viscoelastic solid fully immersed in the fluid, coupled together on the interface surface. The solid is allowed to have self-contact or contact with the rigid boundary of the fluid container. For this problem, a global weak solution with defect measure is constructed by using a multi-layered approximation scheme which decouples the body and the fluid by penalizing the fluid velocity and allowing the fluid to pass through the body, while the body is supplemented with a contact-penalization term. The resulting defect measure is a consequence of pressure concentrations that can appear where the fluid meets the (generally irregular) points of self-contact of the solid. Moreover, we study some geometrical properties of the fluid-structure interface and the contact surface. In particular, we prove a lower bound on area of the interface.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
385
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
280-324
UT code for WoS article
001165870500001
EID of the result in the Scopus database
2-s2.0-85181100958