All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

EXISTENCE OF QUASICONFORMAL MAPPINGS IN A GIVEN HARDY SPACE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10476918" target="_blank" >RIV/00216208:11320/24:10476918 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_CLkdCZuDT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_CLkdCZuDT</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/16418" target="_blank" >10.1090/proc/16418</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    EXISTENCE OF QUASICONFORMAL MAPPINGS IN A GIVEN HARDY SPACE

  • Original language description

    Let Omega be a simply connected domain in C and let 0 &lt; p &lt; infinity. We show that there is a quasiconformal mapping f from the unit disk D onto Omega which is in the Hardy space H-p. We furthermore show that either all quasiconformal mappings from D onto Omega are in H-p for every p, or for every 0 &lt; p &lt; infinity there is a quasiconformal mapping f : D -&gt; Omega with f is not an element of H-p.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    2024

  • Issue of the periodical within the volume

    154

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    177-191

  • UT code for WoS article

    001092833700001

  • EID of the result in the Scopus database

    2-s2.0-85176723675