All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Smooth homeomorphic approximation of piecewise affine homeomorphisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43902598" target="_blank" >RIV/60076658:12510/21:43902598 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24510/21:00009607

  • Result on the web

    <a href="https://www.ems-ph.org/journals/show_abstract.php?issn=1120-6330&vol=32&iss=3&rank=7" target="_blank" >https://www.ems-ph.org/journals/show_abstract.php?issn=1120-6330&vol=32&iss=3&rank=7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/RLM/946" target="_blank" >10.4171/RLM/946</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Smooth homeomorphic approximation of piecewise affine homeomorphisms

  • Original language description

    Given any integral a locally finitely piecewise affine homeomorphism of Omega subset of R-n onto Delta subset of R-n in W-1,W-p, 1 &lt;= p &lt; infinity and any epsilon &gt; 0 we construct a smooth injective map (f) over tilde such that parallel to f - (f) over tilde parallel to(W1,p (Omega, Rn)) &lt; epsilon.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Rendiconti Lincei - Matematica e Applicazioni

  • ISSN

    1120-6330

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    511-534

  • UT code for WoS article

    000753704100007

  • EID of the result in the Scopus database

    2-s2.0-85122640878