All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484022" target="_blank" >RIV/00216208:11320/24:10484022 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/24:10255848

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.110.085306" target="_blank" >10.1103/PhysRevB.110.085306</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure

  • Original language description

    Effective control of interlayer interactions is a key element in modifying the properties of van der Waals heterostructures and the next step toward their practical applications. Focusing on the phosphorene-WSe2 heterostructure, we demonstrate, using first-principles calculations, proximity-induced amplification of the spin-orbit coupling in phosphorene by applying vertical pressure. We simulate external pressure by changing the interlayer distance between bilayer constituents and show that it is possible to tune the spin-orbit field of phosphorene holes in a controllable way. By fitting effective electronic states of the proposed Hamiltonian to the first-principles data, we reveal that the spin-orbit coupling in phosphorene hole bands is enhanced more than two times for experimentally accessible pressures up to 17 kbar. Correspondingly, we find that the pressure-enhanced spin-orbit coupling boosts the Dyakonov-Perel spin relaxation mechanism, reducing the spin lifetime of phosphorene holes by factor 4. We further explore the role of the lateral shift on the spin-orbit field and reveal that the spin-orbit strength of phosphorene holes can be sizably modulated when strong pressure is applied. We also found that the thermopower is governed mainly by the phosphorene and pressure reduces the overall thermoelectric efficiency of the heterostructure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Quantum materials for applications in sustainable technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

    2469-9969

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    085306

  • UT code for WoS article

    001302047000005

  • EID of the result in the Scopus database

    2-s2.0-85202748416