Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484022" target="_blank" >RIV/00216208:11320/24:10484022 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/24:10255848
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.110.085306" target="_blank" >10.1103/PhysRevB.110.085306</a>
Alternative languages
Result language
angličtina
Original language name
Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure
Original language description
Effective control of interlayer interactions is a key element in modifying the properties of van der Waals heterostructures and the next step toward their practical applications. Focusing on the phosphorene-WSe2 heterostructure, we demonstrate, using first-principles calculations, proximity-induced amplification of the spin-orbit coupling in phosphorene by applying vertical pressure. We simulate external pressure by changing the interlayer distance between bilayer constituents and show that it is possible to tune the spin-orbit field of phosphorene holes in a controllable way. By fitting effective electronic states of the proposed Hamiltonian to the first-principles data, we reveal that the spin-orbit coupling in phosphorene hole bands is enhanced more than two times for experimentally accessible pressures up to 17 kbar. Correspondingly, we find that the pressure-enhanced spin-orbit coupling boosts the Dyakonov-Perel spin relaxation mechanism, reducing the spin lifetime of phosphorene holes by factor 4. We further explore the role of the lateral shift on the spin-orbit field and reveal that the spin-orbit strength of phosphorene holes can be sizably modulated when strong pressure is applied. We also found that the thermopower is governed mainly by the phosphorene and pressure reduces the overall thermoelectric efficiency of the heterostructure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Quantum materials for applications in sustainable technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Volume of the periodical
110
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
085306
UT code for WoS article
001302047000005
EID of the result in the Scopus database
2-s2.0-85202748416