Convex hull property for elliptic and parabolic systems of PDE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10485266" target="_blank" >RIV/00216208:11320/24:10485266 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L5e5v0bGs_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L5e5v0bGs_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2024.113554" target="_blank" >10.1016/j.na.2024.113554</a>
Alternative languages
Result language
angličtina
Original language name
Convex hull property for elliptic and parabolic systems of PDE
Original language description
We study the convex hull property for systems of partial differential equations. This is a generalization of the maximum principle for a single equation. We show that the convex hull property holds for a class of elliptic and parabolic systems of non-linear partial differential equations. In particular, this includes the case of the parabolic p-Laplace system. The coupling conditions for coefficients are demonstrated to be optimal by means of respective counterexamples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis, Theory, Methods and Applications
ISSN
0362-546X
e-ISSN
1873-5215
Volume of the periodical
245
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
113554
UT code for WoS article
001236640500001
EID of the result in the Scopus database
2-s2.0-85191474958