Error Norm Estimation in the Conjugate Gradient Algorithm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10486643" target="_blank" >RIV/00216208:11320/24:10486643 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/1.9781611977868" target="_blank" >https://doi.org/10.1137/1.9781611977868</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977868" target="_blank" >10.1137/1.9781611977868</a>
Alternative languages
Result language
angličtina
Original language name
Error Norm Estimation in the Conjugate Gradient Algorithm
Original language description
The conjugate gradient (CG) algorithm is almost always the iterative method of choice for solving linear systems with symmetric positive definite matrices. This book describes and analyzes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error. The techniques can be used to derive reliable stopping criteria. Computation of estimates of the smallest and largest eigenvalues during CG iterations is also shown. The algorithms are illustrated by many numerical experiments, and they can be easily incorporated into existing CG codes. Error Norm Estimation in the Conjugate Gradient Algorithm is intended for those in academia and industry who use the conjugate gradient algorithm, including the many branches of science and engineering in which symmetric linear systems have to be solved.
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
978-1-61197-785-1
Number of pages
127
Publisher name
Society for Industrial and Applied Mathematics
Place of publication
Philadelphia, PA
UT code for WoS book
—