All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

EXTENDED NULLSTELLENSATZ PROOF SYSTEMS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10487988" target="_blank" >RIV/00216208:11320/24:10487988 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xbOt~UqDIx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xbOt~UqDIx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/16709" target="_blank" >10.1090/proc/16709</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    EXTENDED NULLSTELLENSATZ PROOF SYSTEMS

  • Original language description

    For a finite set F of polynomials from F-p[(x) over bar] (p is a fixed prime) containing all polynomials x(2)-x, a Nullstellensatz proof of the unsolvability of the systemf =0, all f is an element of Fin F-p is an F-p[(x) over bar]-linear combination Sigma(f is an element of F) h(f)center dot f that equals to 1 in F-p[(x) over bar]. The measure of complexity of such a proof is its degree: max(f) deg(h(f)f).We study the problem to establish degree lower bounds for some extended NS proof systems: these systems prove the unsolvability of F (in F-p) by proving the unsolvability of a bigger set F boolean OR E, where the set E subset of F-p[(x) over bar, (r) over bar] contains all polynomials r(p)-r and satisfies the following soundness condition:center dot Any 0,1-assignment (a) over bar to variables &lt;(x)over bar can be appended by an Fp-assignment &lt;(b)over bar&gt; to variables (r) over bar such that for all g is an element of E it holds that g((a) over bar, (b) over bar)=0.We define a notion of pseudo-solutions of F and prove that the existence of pseudo-solutions with suitable parameters implies lower bounds for two extended NS proof systems ENS and UENS defined by Buss et al [Comput. Complexity 6 (1996/97), pp. 256-298]. Further we give a combinatorial example of F and candidate pseudo-solutions based on the pigeonhole principle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    152,

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    4881-4892

  • UT code for WoS article

    001327026300001

  • EID of the result in the Scopus database

    2-s2.0-85205826145