The Linked Complexity of Coseismic and Postseismic Faulting Revealed by Seismo‐Geodetic Dynamic Inversion of the 2004 Parkfield Earthquake
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488402" target="_blank" >RIV/00216208:11320/24:10488402 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lcJgTLIkdG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lcJgTLIkdG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2024JB029410" target="_blank" >10.1029/2024JB029410</a>
Alternative languages
Result language
angličtina
Original language name
The Linked Complexity of Coseismic and Postseismic Faulting Revealed by Seismo‐Geodetic Dynamic Inversion of the 2004 Parkfield Earthquake
Original language description
Several regularly recurring moderate-size earthquakes motivated dense instrumentation of theParkfield section of the San Andreas fault (SAF), providing an invaluable near-fault observatory. We present aseismo-geodetic dynamic inversion of the 2004 Parkfield earthquake, which illuminates the interlinkedcomplexity of faulting across time scales. Using fast-velocity-weakening rate-and-state friction, we jointlymodel coseismic dynamic rupture and the 90-day evolution of postseismic slip in a 3D domain. We utilize aparallel tempering Markov chain Monte Carlo approach to solve this non-linear high-dimensional inverseproblem, constraining spatially varying prestress and fault friction parameters by 30 strong motion and 12 GPSstations. From visiting >2 million models, we discern complex coseismic rupture dynamics that transition froma strongly radiating pulse-like phase to a mildly radiating crack-like phase. Both coseismic phases are separatedby a shallow strength barrier that nearly arrests rupture and leads to a gap in the afterslip, reflecting the geologicheterogeneity along this segment of the SAF. Coseismic rupture termination involves distinct arrest mechanismsthat imprint on afterslip kinematics. A backward propagating afterslip front may drive delayed aftershockactivity above the hypocenter. Trade-off analysis of the 10,500 best-fitting models uncovers local correlationsbetween prestress levels and the reference friction coefficient, alongside an anticorrelation between prestressand rate-state parameters b a. We find that a complex, fault-local interplay of dynamic parametersdetermines the nucleation, propagation, and arrest of both, co- and postseismic faulting. This study demonstratesthe potential of inverse physics-based modeling to reveal novel insights and detailed characterizations of well-recorded earthquakes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10500 - Earth and related environmental sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geophysical Research: Solid Earth
ISSN
2169-9313
e-ISSN
2169-9356
Volume of the periodical
2024
Issue of the periodical within the volume
November
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
1-30
UT code for WoS article
001371400900001
EID of the result in the Scopus database
2-s2.0-85211169639