All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast relocking and afterslip-seismicity evolution following the 2015 Mw 8.3 Illapel earthquake in Chile

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F23%3A00578048" target="_blank" >RIV/67985530:_____/23:00578048 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-023-45369-9" target="_blank" >https://www.nature.com/articles/s41598-023-45369-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-45369-9" target="_blank" >10.1038/s41598-023-45369-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast relocking and afterslip-seismicity evolution following the 2015 Mw 8.3 Illapel earthquake in Chile

  • Original language description

    Large subduction earthquakes induce complex postseismic deformation, primarily driven by afterslip and viscoelastic relaxation, in addition to interplate relocking processes. However, these signals are intricately intertwined, posing challenges in determining the timing and nature of relocking. Here, we use six years of continuous GNSS measurements (2015-2021) to study the spatiotemporal evolution of afterslip, seismicity and locking after the 2015 Illapel earthquake (M-w 8.3). Afterslip is inverted from postseismic displacements corrected for nonlinear viscoelastic relaxation modeled using a power-law rheology, and the distribution of locking is obtained from the linear trend of GNSS stations. Our results show that afterslip is mainly concentrated in two zones surrounding the region of largest coseismic slip. The accumulated afterslip (corresponding to M-w 7.8) exceeds 1.5 m, with aftershocks mainly occurring at the boundaries of the afterslip patches. Our results reveal that the region experiencing the largest coseismic slip undergoes rapid relocking, exhibiting the behavior of a persistent velocity weakening asperity, with no observed aftershocks or afterslip within this region during the observed period. The rapid relocking of this asperity may explain the almost regular recurrence time of earthquakes in this region, as similar events occurred in 1880 and 1943.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    19511

  • UT code for WoS article

    001106459000019

  • EID of the result in the Scopus database

    2-s2.0-85176121561