Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489231" target="_blank" >RIV/00216208:11320/24:10489231 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L.euDrYqTl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L.euDrYqTl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2024.113305" target="_blank" >10.1016/j.jcp.2024.113305</a>
Alternative languages
Result language
angličtina
Original language name
Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations
Original language description
We address the numerical treatment of source terms in algebraic flux correction schemes for steady convection-diffusion-reaction (CDR) equations. The proposed algorithm constrains a continuous piecewise-linear finite element approximation using a monolithic convex limiting (MCL) strategy. Failure to discretize the convective derivatives and source terms in a compatible manner produces spurious ripples, e.g., in regions where the coefficients of the continuous problem are constant and the exact solution is linear. We cure this deficiency by incorporating source term components into the fluxes and intermediate states of the MCL procedure. The design of our new limiter is motivated by the desire to preserve simple steady-state equilibria exactly, as in well-balanced schemes for the shallow water equations. The results of our numerical experiments for two-dimensional CDR problems illustrate potential benefits of well-balanced flux limiting in the scalar case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
1090-2716
Volume of the periodical
518
Issue of the periodical within the volume
1 December 2024
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
113305
UT code for WoS article
001287626900001
EID of the result in the Scopus database
2-s2.0-85200158884