All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489231" target="_blank" >RIV/00216208:11320/24:10489231 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L.euDrYqTl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L.euDrYqTl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcp.2024.113305" target="_blank" >10.1016/j.jcp.2024.113305</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations

  • Original language description

    We address the numerical treatment of source terms in algebraic flux correction schemes for steady convection-diffusion-reaction (CDR) equations. The proposed algorithm constrains a continuous piecewise-linear finite element approximation using a monolithic convex limiting (MCL) strategy. Failure to discretize the convective derivatives and source terms in a compatible manner produces spurious ripples, e.g., in regions where the coefficients of the continuous problem are constant and the exact solution is linear. We cure this deficiency by incorporating source term components into the fluxes and intermediate states of the MCL procedure. The design of our new limiter is motivated by the desire to preserve simple steady-state equilibria exactly, as in well-balanced schemes for the shallow water equations. The results of our numerical experiments for two-dimensional CDR problems illustrate potential benefits of well-balanced flux limiting in the scalar case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Physics

  • ISSN

    0021-9991

  • e-ISSN

    1090-2716

  • Volume of the periodical

    518

  • Issue of the periodical within the volume

    1 December 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    113305

  • UT code for WoS article

    001287626900001

  • EID of the result in the Scopus database

    2-s2.0-85200158884