On abelian-by-cyclic Moufang loops
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489487" target="_blank" >RIV/00216208:11320/24:10489487 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FXfdn09ziS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FXfdn09ziS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2022-0391" target="_blank" >10.1515/forum-2022-0391</a>
Alternative languages
Result language
angličtina
Original language name
On abelian-by-cyclic Moufang loops
Original language description
We initiate a systematic study of abelian-by-cyclic Moufang loops, that is, Moufang loops Q with an abelian normal subgroup X such that Q / X is a cyclic group. Among other results, we construct all split abelian-by-cyclic Moufang loops in which both X and Q / X are 3-divisible, using so-called Moufang permutations on X, which are permutations that deviate from an automorphism of X by an alternating biadditive mapping. Additional abelian-by-cyclic Moufang loops are obtained from so-called construction pairs. As an aside, we show that, in a Moufang loop Q obtained from a construction pair, the abelian normal subgroup X induces an abelian congruence of Q if and only if Q is a group.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LTAUSA19070" target="_blank" >LTAUSA19070: Commutators, quasigroups and Yang Baxter equation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
1435-5337
Volume of the periodical
36
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
34
Pages from-to
339-372
UT code for WoS article
001123326200001
EID of the result in the Scopus database
2-s2.0-85178411189