All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Periodicity of general multidimensional continued fractions using repetend matrix form

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489800" target="_blank" >RIV/00216208:11320/24:10489800 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/24:00374773 RIV/68407700:21340/24:00374773

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2cG7H.H4r" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2cG7H.H4r</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.exmath.2024.125571" target="_blank" >10.1016/j.exmath.2024.125571</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Periodicity of general multidimensional continued fractions using repetend matrix form

  • Original language description

    We consider expansions of vectors by a general class of multidimensional continued fraction algorithms. If the expansion is eventually periodic, then we describe the possible structure of a matrix corresponding to the repetend and use it to prove that a number of vectors have an eventually periodic expansion in the Algebraic Jacobi-Perron algorithm. Further, we give criteria for vectors to have purely periodic expansions; in particular, the vector cannot be totally positive. (c) 2024 Elsevier GmbH. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Expositiones Mathematicae

  • ISSN

    0723-0869

  • e-ISSN

    1878-0792

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    36

  • Pages from-to

    125571

  • UT code for WoS article

    001230331300001

  • EID of the result in the Scopus database

    2-s2.0-85190170943