Periodicity of general multidimensional continued fractions using repetend matrix form
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489800" target="_blank" >RIV/00216208:11320/24:10489800 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/24:00374773 RIV/68407700:21340/24:00374773
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2cG7H.H4r" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2cG7H.H4r</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.exmath.2024.125571" target="_blank" >10.1016/j.exmath.2024.125571</a>
Alternative languages
Result language
angličtina
Original language name
Periodicity of general multidimensional continued fractions using repetend matrix form
Original language description
We consider expansions of vectors by a general class of multidimensional continued fraction algorithms. If the expansion is eventually periodic, then we describe the possible structure of a matrix corresponding to the repetend and use it to prove that a number of vectors have an eventually periodic expansion in the Algebraic Jacobi-Perron algorithm. Further, we give criteria for vectors to have purely periodic expansions; in particular, the vector cannot be totally positive. (c) 2024 Elsevier GmbH. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expositiones Mathematicae
ISSN
0723-0869
e-ISSN
1878-0792
Volume of the periodical
42
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
36
Pages from-to
125571
UT code for WoS article
001230331300001
EID of the result in the Scopus database
2-s2.0-85190170943