All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotics of parity biases for partitions into distinct parts via Nahm sums

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489845" target="_blank" >RIV/00216208:11320/24:10489845 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Bj00dwM2jx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Bj00dwM2jx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/plms.70010" target="_blank" >10.1112/plms.70010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotics of parity biases for partitions into distinct parts via Nahm sums

  • Original language description

    For a random partition, one of the most basic questions is: what can one expect about the parts that arise? For example, what is the distribution of the parts of random partitions modulo N$N$? As most partitions contain a 1, and indeed many 1s arise as parts of a random partition, it is natural to expect a skew toward 1(modN)$1 (mathrm{mod} , N)$. This is indeed the case. For instance, Kim, Kim, and Lovejoy recently established &quot;parity biases&quot; showing how often one expects partitions to have more odd than even parts. Here, we generalize their work to give asymptotics for biases (modN)$ (mathrm{mod} , N)$ for partitions into distinct parts. The proofs rely on the Circle Method and give independently useful techniques for analyzing the asymptotics of Nahm-type q$q$-hypergeometric series.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the London Mathematical Society

  • ISSN

    0024-6115

  • e-ISSN

    1460-244X

  • Volume of the periodical

    129

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    40

  • Pages from-to

    e70010

  • UT code for WoS article

    001373492100005

  • EID of the result in the Scopus database

    2-s2.0-85210068656