Detection of Changes in Panel Data Models with Stationary Regressors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489873" target="_blank" >RIV/00216208:11320/24:10489873 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-61853-6_16" target="_blank" >https://doi.org/10.1007/978-3-031-61853-6_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-61853-6_16" target="_blank" >10.1007/978-3-031-61853-6_16</a>
Alternative languages
Result language
angličtina
Original language name
Detection of Changes in Panel Data Models with Stationary Regressors
Original language description
We consider a panel regression model with cross-sectional dimension N. The aim is to test, based on T observations, whether the intercept in the model remains unchanged throughout the observation period. The test procedure involves the use of a CUSUM-type statistic derived from a quasi-likelihood argument. We derive the limit null distribution of the test under strong mixing and stationarity conditions on the errors and regressors, and show that the results remain valid in the presence of weak and dominating cross-sectional dependence. We also propose a self-normalized version of the test which is convenient from a practical perspective in that the estimation of long-run variances is avoided entirely. The theoretical results are supported by a simulation study that indicates that the tests work well in the case of small to moderate sample sizes. An illustrative application of the procedure to US mutual fund data demonstrates the relevance of the proposed procedure in financial settings.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Recent Advances in Econometrics and Statistics
ISBN
978-3-031-61852-9
Number of pages of the result
20
Pages from-to
305-324
Number of pages of the book
618
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—