Emoji driven crypto assets market reactions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489891" target="_blank" >RIV/00216208:11320/24:10489891 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/mmcks-2024-0008" target="_blank" >10.2478/mmcks-2024-0008</a>
Alternative languages
Result language
angličtina
Original language name
Emoji driven crypto assets market reactions
Original language description
In the burgeoning realm of cryptocurrency, social media platforms like Twitter have become pivotal in influencing market trends and investor sentiments. In our study, we leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis, focusing on the impact of emoji sentiment on cryptocurrency markets. By translating emojis into quantifiable sentiment data, we correlate these insights with key market indicators such as BTC Price and the VCRIX index. Our architecture's analysis of emoji sentiment demonstrated a distinct advantage over FinBERT's pure text sentiment analysis in such predicting power. This approach may be fed into the development of trading strategies aimed at utilizing social media elements to identify and forecast market trends. Crucially, our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns and contribute to the stabilization of returns. This research underscores the practical benefits of integrating advanced AI-driven analyzes into financial strategies, offering a nuanced perspective on the interaction between digital communication and market dynamics in an academic context.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Management & Marketing
ISSN
1842-0206
e-ISSN
2069-8887
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
RO - ROMANIA
Number of pages
21
Pages from-to
158-178
UT code for WoS article
001270048700002
EID of the result in the Scopus database
2-s2.0-85198981994