All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Emoji driven crypto assets market reactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489891" target="_blank" >RIV/00216208:11320/24:10489891 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/mmcks-2024-0008" target="_blank" >10.2478/mmcks-2024-0008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Emoji driven crypto assets market reactions

  • Original language description

    In the burgeoning realm of cryptocurrency, social media platforms like Twitter have become pivotal in influencing market trends and investor sentiments. In our study, we leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis, focusing on the impact of emoji sentiment on cryptocurrency markets. By translating emojis into quantifiable sentiment data, we correlate these insights with key market indicators such as BTC Price and the VCRIX index. Our architecture&apos;s analysis of emoji sentiment demonstrated a distinct advantage over FinBERT&apos;s pure text sentiment analysis in such predicting power. This approach may be fed into the development of trading strategies aimed at utilizing social media elements to identify and forecast market trends. Crucially, our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns and contribute to the stabilization of returns. This research underscores the practical benefits of integrating advanced AI-driven analyzes into financial strategies, offering a nuanced perspective on the interaction between digital communication and market dynamics in an academic context.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Management &amp; Marketing

  • ISSN

    1842-0206

  • e-ISSN

    2069-8887

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    RO - ROMANIA

  • Number of pages

    21

  • Pages from-to

    158-178

  • UT code for WoS article

    001270048700002

  • EID of the result in the Scopus database

    2-s2.0-85198981994