Forecasting cryptocurrency value by sentiment analysis: An HPC-oriented survey of the state-of-the-art in the cloud era
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522819" target="_blank" >RIV/70883521:28140/19:63522819 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-16272-6.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-16272-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16272-6_12" target="_blank" >10.1007/978-3-030-16272-6_12</a>
Alternative languages
Result language
angličtina
Original language name
Forecasting cryptocurrency value by sentiment analysis: An HPC-oriented survey of the state-of-the-art in the cloud era
Original language description
This chapter surveys the state-of-the-art in forecasting cryptocurrency value by Sentiment Analysis. Key compounding perspectives of current challenges are addressed, including blockchains, data collection, annotation, and filtering, and sentiment analysis metrics using data streams and cloud platforms. We have explored the domain based on this problem-solving metric perspective, i.e., as technical analysis, forecasting, and estimation using a standardized ledger-based technology. The envisioned tools based on forecasting are then suggested, i.e., ranking Initial Coin Offering (ICO) values for incoming cryptocurrencies, trading strategies employing the new Sentiment Analysis metrics, and risk aversion in cryptocurrencies trading through a multi-objective portfolio selection. Our perspective is rationalized on the perspective on elastic demand of computational resources for cloud infrastructures.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
High-Performance Modelling and Simulation for Big Data Applications
ISBN
978-3-030-16271-9
Number of pages of the result
25
Pages from-to
325-349
Number of pages of the book
352
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—