On the exponential decay in time of solutions to a generalized Navier-Stokes-Fourier system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490283" target="_blank" >RIV/00216208:11320/24:10490283 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XtTWga3z1d" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XtTWga3z1d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.10.036" target="_blank" >10.1016/j.jde.2023.10.036</a>
Alternative languages
Result language
angličtina
Original language name
On the exponential decay in time of solutions to a generalized Navier-Stokes-Fourier system
Original language description
We consider a non-Newtonian incompressible heat conducting fluid with a prescribed nonuniform temperature on the boundary and with the no-slip boundary condition for the velocity. We assume no external body forces. For the power-law like models with the power law index bigger than or equal to 11/5 in three dimensions, we identify a class of solutions fulfilling the entropy equality and converging to the equilibria exponentially in a proper metric. In fact, we show the existence of a Lyapunov functional for the problem. Consequently, the steady solution is nonlinearly stable and attracts all proper weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-11027X" target="_blank" >GX20-11027X: Mathematical analysis of partial differential equations describing far-from-equilibrium open systems in continuum thermodynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
379
Issue of the periodical within the volume
Neuveden
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
762-793
UT code for WoS article
001109172900001
EID of the result in the Scopus database
2-s2.0-85175816107