All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490811" target="_blank" >RIV/00216208:11320/24:10490811 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/24:00137365

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cL5ThN_qTy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cL5ThN_qTy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10107-023-02048-x" target="_blank" >10.1007/s10107-023-02048-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming

  • Original language description

    An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the l(1)-norm of the Graver basis is bounded by a function of the maximum l(1)-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the l(1)-norm of the Graver basis of the constraint matrix, when parameterized by the l(1)-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Programming, Series A

  • ISSN

    0025-5610

  • e-ISSN

    1436-4646

  • Volume of the periodical

    208

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    35

  • Pages from-to

    497-531

  • UT code for WoS article

    001145544400002

  • EID of the result in the Scopus database

    2-s2.0-85182671269