Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490811" target="_blank" >RIV/00216208:11320/24:10490811 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/24:00137365
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cL5ThN_qTy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cL5ThN_qTy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-023-02048-x" target="_blank" >10.1007/s10107-023-02048-x</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming
Original language description
An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the l(1)-norm of the Graver basis is bounded by a function of the maximum l(1)-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the l(1)-norm of the Graver basis of the constraint matrix, when parameterized by the l(1)-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Programming, Series A
ISSN
0025-5610
e-ISSN
1436-4646
Volume of the periodical
208
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
35
Pages from-to
497-531
UT code for WoS article
001145544400002
EID of the result in the Scopus database
2-s2.0-85182671269