Spiraling and Folding: The Topological View
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490812" target="_blank" >RIV/00216208:11320/24:10490812 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-W0FXH8k8Y" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-W0FXH8k8Y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-023-00603-z" target="_blank" >10.1007/s00454-023-00603-z</a>
Alternative languages
Result language
angličtina
Original language name
Spiraling and Folding: The Topological View
Original language description
For every n, we construct two arcs in the plane that intersect at least n times and do not form spirals. The construction is in three stages: we first exhibit two closed curves on the torus that do not form double spirals, then two arcs on the torus that do not form spirals, and finally two arcs in the plane that do not form spirals. The planar arcs provide a counterexample to a proof of Pach and Toth concerning string graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-19073S" target="_blank" >GA22-19073S: Combinatorial and computational complexity in topology and geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
1432-0444
Volume of the periodical
72
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
246-268
UT code for WoS article
001100475500001
EID of the result in the Scopus database
2-s2.0-85176291816