All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating Spanning Tree Congestion on Graphs with Polylog Degree

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490846" target="_blank" >RIV/00216208:11320/24:10490846 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-63021-7_38" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_38</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63021-7_38" target="_blank" >10.1007/978-3-031-63021-7_38</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating Spanning Tree Congestion on Graphs with Polylog Degree

  • Original language description

    Given a graph G and a spanning tree T of G, the congestion of an edge e is an element of E(T), with respect to G and T, is the number of edges uv in G such that the unique path in T connecting the vertices u and v traverses the edge e. Given a connected graph G, the spanning tree congestion problem is to construct a spanning tree T that minimizes its maximum edge congestion. It is known that the problem is NP-hard, and that every spanning tree is an n/2-approximation, but it is not even known whether an o(n)-approximation is possible in polynomial time; by n we denote the number of vertices in the graph G. We consider the problem on graphs with maximum degree bounded by Delta = polylog(n) and describe an o(n)-approximation algorithm; note that even on this restricted class of graphs the spanning tree congestion can be of order n center dot polylog(n).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    COMBINATORIAL ALGORITHMS, IWOCA 2024

  • ISBN

    978-3-031-63020-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    497-508

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Ischia

  • Event date

    Jul 1, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001282050500038