Approximating Spanning Tree Congestion on Graphs with Polylog Degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490846" target="_blank" >RIV/00216208:11320/24:10490846 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-63021-7_38" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63021-7_38" target="_blank" >10.1007/978-3-031-63021-7_38</a>
Alternative languages
Result language
angličtina
Original language name
Approximating Spanning Tree Congestion on Graphs with Polylog Degree
Original language description
Given a graph G and a spanning tree T of G, the congestion of an edge e is an element of E(T), with respect to G and T, is the number of edges uv in G such that the unique path in T connecting the vertices u and v traverses the edge e. Given a connected graph G, the spanning tree congestion problem is to construct a spanning tree T that minimizes its maximum edge congestion. It is known that the problem is NP-hard, and that every spanning tree is an n/2-approximation, but it is not even known whether an o(n)-approximation is possible in polynomial time; by n we denote the number of vertices in the graph G. We consider the problem on graphs with maximum degree bounded by Delta = polylog(n) and describe an o(n)-approximation algorithm; note that even on this restricted class of graphs the spanning tree congestion can be of order n center dot polylog(n).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMBINATORIAL ALGORITHMS, IWOCA 2024
ISBN
978-3-031-63020-0
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
497-508
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Ischia
Event date
Jul 1, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001282050500038