Matrix numerical method for probability densities of stochastic delay differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491343" target="_blank" >RIV/00216208:11320/24:10491343 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4_.mXFIcbd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4_.mXFIcbd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad4752" target="_blank" >10.1088/1751-8121/ad4752</a>
Alternative languages
Result language
angličtina
Original language name
Matrix numerical method for probability densities of stochastic delay differential equations
Original language description
Stochastic processes with time delay are invaluable for modeling in science and engineering when finite signal transmission and processing speeds can not be neglected. However, they can seldom be treated with sufficient precision analytically if the corresponding stochastic delay differential equations (SDDEs) are nonlinear. This work presents a numerical algorithm for calculating the probability densities of processes described by nonlinear SDDEs. The algorithm is based on Markovian embedding and solves the problem by basic matrix operations. We validate it for a broad class of parameters using exactly solvable linear SDDEs and a cubic SDDE. Besides, we show how to apply the algorithm to calculate transition rates and first passage times for a Brownian particle diffusing in a time-delayed cusp potential.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
57
Issue of the periodical within the volume
23
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
235001
UT code for WoS article
001248915600001
EID of the result in the Scopus database
2-s2.0-85195561021